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Abstract

We consider the sensitivity, with respect to a parameter θ, of paramet-
ric families of operators Aθ, vectors πθ corresponding to the adjoints A

∗

θ

of Aθ via A
∗

θπθ = 0 and one parameter semigroups t 7→ e
tAθ . We display

formulas relating weak differentiability of θ 7→ πθ (at θ = 0) to weak dif-
ferentiability of θ 7→ A

∗

θπ0 and [eAθt]∗π0. We give two applications: The
first one concerns the sensitivity of the Ornstein–Uhlenbeck process with
respect to its location parameter. The second one provides new insights
regarding the Wright–Fisher diffusion for small mutation parameter.

MSC 2001: 47A55, 35B20, 47D06, 47D07, 46N60, 46A20

Keywords: one parameter semigroups, sensitivity analysis, diffusions, Wright–
Fisher diffusion, Ornstein–Uhlenbeck semigroup.

Introduction

Sensitivities of parametric families of dynamical systems (with respect to the
parameter) have been studied in the context of stochastic processes [10] as well
as partial differential equations [2] and are useful tools in optimization and con-
trol. We consider sensitivities in the setting of one parameter semigroups. This
setting constitutes a unifying approach to continuous time Markov processes
[1] and linear PDEs [4], [1]. In particular it allows an elegant treatment of the
sensitivities of the Wright–Fisher diffusion.
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We consider one parameter semigroups1 U := (U(t))t∈[0,∞), that can be
represented as U(t) = etA for some linear operator A : E → E on some linear
space E. This does not exclude generators A that are usually considered as
’unbounded’, since we do in general not suppose that E is a Banach space. (For
information on the Hille-Yosida Generation Theorem providing U(t) = etA for
unbounded A in a Banach space setting consult [4, Chapter II, Section 3].)

Since the topic of this article is not the behaviour of a single semigruop,
but the sensitivity of their behaviour with respect to small perturbations of a
parameter θ, we do not only consider one generator A or one semigroup U ,
but consider parametric families (Aθ)θ∈Θ and (Uθ)θ∈Θ of generators Aθ and
semigroups Uθ = (etAθ )t∈[0,∞), with 0 ∈ Θ ⊆ R. (Note that θ is an addi-
tional parameter and must not be confused with the parameter t of a single one
parameter semigroup.)

We further consider a second linear space F that is in duality with E and
parametric families (πθ)θ∈Θ such that πθ ∈ F and A∗

θπθ = 0 for an adjoint
(dual) A∗

θ : F → F of Aθ.
We first show in Lemma 1.5 that differentiability of θ 7→ A∗

0πθ at θ = 0 is
equivalent to differentiability of θ 7→ A∗

θπ0 at θ = 0 provided that

[A∗
0 −A∗

θ ][πθ − π0] → 0 for θ → 0,

with all limits taken in the weak sense with respect to the given duality. Further

∂A∗
0πθ

dθ
|θ=0 = −∂A∗

θπ0

dθ
|θ=0, (1)

with the involved limits again taken in the weak sense.

Thus Lemma 1.5 makes the calculation of
∂A∗

0
πθ

dθ |θ=0 in some cases easier than

the calculation of ∂πθ

∂θ |θ=0. This fact is exemplified by Remark 4.4, Proposition
4.5 and Remark 4.6 in the case that Aθ is the generator of the Wright–Fisher
diffusions.

Next we prove Theorem 2.6, the main result of the article. In the case that F
is a subspace of the algebraic dual E′ of E, the theorem provides a formula (see

Remark 2.7) for ∂[Uθ(t)]
∗

∂θ π0|θ=0 with [Uθ(t)]
∗ denoting the uniquely determined

adjoint of Uθ(t), i.e., a formula for the sensitivity of t 7→ [Uθ(t)]
∗π0 with respect

to the parameter θ. This formula involves ν :=
∂A∗

θπ0

dθ |θ=0 and operators V0(t)

given by the series expansion V0(t) =
∑∞

i=1
tn

n!A
n−1.

It is a simple fact that in the case that F ⊆ E′ we have [Uθ(t)]
∗πθ = πθ, i.e.,

πθ is a stationary vector of [Uθ(t)]
∗.

One of the hypotheses of Theorem 2.6 is that E =
⋃

j∈J Ej with Ej Banach
spaces with respect to the norms ‖.‖j, such that Aθ(Ej) ⊆ Ej for all θ ∈ Θ
and the restriction Aθ|Ej

of Aθ to Ej is bounded with respect to ‖.‖j. It is
essential for the proof of Theorem 2.6 that the Ej do not depend on θ. Note
that this hypothesis is fairly restrictive. It prevents us, for example, from the

1Mappings U from [0,∞) to the space of linear operators U(t) : E → E on some linear
space E such that U(t + s) = U(t)U(s)
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investigation of diffusion equations with arbitrary coefficient functions. It allows
however quite interesting insights in the following situation:

Our abstract results are applicable to the case that E equals the space of
polynomials on some appropriate real interval and the generators Aθ are of the
form

Aθ :=

n
∑

i=1

pi(x) · qi(θ)
∂i

∂xi (2)

with pi polynomials of degree less than i and qi differentiable functions. This is
due to the fact that the operators Aθ leave for any k ∈ N the spaces of polyno-
mials of degree less than k invariant. We apply our results to two examples of
diffusions operators Aθ that fulfill (2), i.e. to differential operators of the form
(2) with n = 2.

In the first example we demonstrate the applicability of our results to a para-
metric family of Ornstein–Uhlenbeck semigroups t 7→ [Uθ(t)]

∗ corresponding to
generators

Aθ := (θ − x)
∂

∂x
+

σ2

2

∂2

∂x2 ,

considering without loss of generality the case σ2 = 1.
OU-semigroups and stochastic processes corresponding to these semigroups

are frequently used in interest rate modeling. The parameter θ is interpreted as
the interest rate to which the process reverts. (Compare with [14, Vol 2, Chapter
46] and [11, Section 9.3].) In this example all derivatives can be represented by
functions. Further it is possible to calculate the derivatives directly since the
evolution of the OU-semigroup is explicitly given by (31). Thus the example of
the OU-semigroup is just of an illustrative nature that does not really rely on
the developed theory. This is quite different for our second example:

In our second example we consider a parametric family of Wright–Fisher
diffusions with mutation and without selection, that can be described by the
semigroups [Uθ(t)]

∗ corresponding to the generators

Aθ := (1− x)θ
∂

∂x
+ xκ

∂

∂x
+ x(1 − x)

1

2

∂2

∂x2
. (3)

Wright–Fisher diffusions are useful tools in population genetics, describing the
distributions of allele-frequencies in a population (see [5] and Remark 4.7). Note
that the stationary distribution π0 of [U0(t)]

∗ is in the degenerate case θ = 0
and µ > 0 given by the Dirac measure at 0. We calculate the sensitivity dπθ

dθ |θ=0

of πθ at θ = 0 as well as the sensitivities A∗
0
dπθ

dθ and
∂U∗

θ π0

dθ |θ=0. We obtain

(Proposition 4.6, formula (37)) that A∗ dπθ

dθ |θ=0 = ∂
∂x , i.e., the sensitivities under

consideration are in general not representable by functions or measures on [0, 1],
but are general linear functionals on the space of polynomials on [0, 1].

What makes the concrete calculation of these sensitivities difficult is the
fact that the involved operators are not diagonalizable. It is however possible
to construct a basis (see Remark 4.9) of the space of polynomials such that A0

is almost diagonalizable in the sense that equation (48) holds. This enables us
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to provide a relatively simple recursive formula for the sensitivity ∂Uθ

∂θ π0|θ=0

(Theorem 4.10) with respect to this basis.
Although our methods are purely functional analytic and non-probabilistic

in nature we can—in the case of diffusion processes—interpret the action of the
sensitivities on the space of polynomials in a probabilistic manner: The action of
the derivative on the n-th monomial is simply the derivative of the n-th moment
of the parametric family of probability measures under consideration. This can
be further interpreted in the case of the Wright–Fisher diffusion (compare with
Remark 4.7).

Derivatives of diffusion semigruops with respect to an additional parameter
θ have been dealt with in the context of mathematical finance mainly in the
context of the stochastic calculus of variations, but also in a PDE context. For
an introduction to such results consult [9] (especially [9, Theorems 2.2 and 2.3])
and [14]. (For an elementary approach to the relationship of diffusion processes
and diffusion equations consult [13]). Derivatives of Markov kernels have been
considered in [10] and [6]. An extension to derivatives of general operators in a
Banach space context, relating the derivatives of the operators to the derivatives
of their stationary vectors has been given in [12].

1 Generators and stationary vectors

Remark 1.1 We follow in the style of presentation of our general functional
analytic results [7, Sections 16 and 21].

Definition 1.2 We say that (E,F, 〈.|.〉) is a dual pairing of the linear spaces E
and F if 〈.|.〉 : E × F → R is bilinear. We denote by w(E,F ) and w(F,E) the
weak topologies induced by the families of mappings {ξ 7→ 〈ξ|µ〉 | µ ∈ F} and
{µ 7→ 〈ξ|µ〉 | ξ ∈ E}, respectively. We say that the dual pairing is separating
if w(E,F ) and w(F,E) are Hausdorff. In the case of a separating dual pairing
we may identify F with a subspace of the algebraic dual E′ and vice versa
E with a subspace of F ′. We denote the spaces of w(E,F )-continuous linear
transformations A : E → E by Lw(E) and the space of w(F,E)-continuous
linear transformation A : F → F by Lw(F ), respectively. We say that the
linear transformations S : E → E and T : F → F are dual if for arbitrary ξ ∈ E
and µ ∈ F we have 〈Sξ|µ〉 = 〈ξ|Tµ〉. In the case that the pairing is separating,
we call a dual transformations an adjoint and note that the adjoint is uniquely
determined.

Remark 1.3 Let (E,F, 〈.|.〉) be a dual pairing. Let E′ denote the algebraic
dual of E, i.e, the space of all linear functionals (continuous or not) on E.
Given a parametric family (µθ)θ∈Θ ∈ FΘ such that

∀ξ ∈ E lim
θ→0

θ−1〈ξ|µθ − µ0〉 exists, (4)
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we let ∂µθ

∂θ |θ=0 ∈ E′ denote the unique linear functional such that

lim
θ→0

θ−1〈ξ|µθ − µ0〉 =
∂µθ

∂θ
|θ=0(ξ). (5)

We call ∂µθ

∂θ |θ=0 the E-derivative of θ 7→ µθ at θ = 0 and say that some ν ∈ F

represents ∂µθ

∂θ |θ=0 if

〈ξ|ν〉 = ∂µθ

∂θ
|θ=0(ξ). (6)

In the case that the dual pairing is separating the representative ν ∈ F is unique
(if it exists).

Proposition 1.4 A mapping S : E → E possesses a dual T : F → F if and
only if S ∈ Lw(E). Further T ∈ Lw(F ) (since T possesses the dual S).

Proof: See [7] 21.1.

Lemma 1.5 Let (E,F, 〈.|.〉) be a dual pairing. Let 0 ∈ Θ ⊆ R with 0 an
accumulation point of Θ. For each θ ∈ Θ let Aθ ∈ Lw(E) and πθ ∈ F . Denote
by A∗

θ a dual (the adjoint) of Aθ. (Note that the existence of A∗
θ is granted by

Proposition 1.4). Suppose that:

(∀θ ∈ Θ) A∗
θπθ = 0, (7)

and
(∀ξ ∈ E) lim

θ→0
θ−1〈ξ|[Aθ −A0]

∗(πθ − π0)〉 = 0. (8)

Then θ 7→ A∗
0πθ possesses an E-derivative at 0 that is represented by −ν ∈ F ,

i.e.,
(∀ξ ∈ E) lim

θ→0
θ−1〈ξ|A∗

0(πθ − π0)〉 = 〈ξ| − ν〉, (9)

if and only if θ 7→ A∗
θπ0 possesses an E-derivative at 0 represented by ν ∈ F ,

i.e.,
(∀ξ ∈ E) lim

θ→0
θ−1〈ξ|[A∗

θ −A∗
0]π0〉 = 〈ξ|ν〉. (10)

Proof: Let ξ ∈ E be arbitrary. Calculation gives:

〈

ξ

∣

∣

∣

∣

A∗
θπθ −A∗

0π0

θ

〉

−
〈

ξ

∣

∣

∣

∣

[A∗
θ −A∗

0][πθ − π0]

θ

〉

=

〈

ξ

∣

∣

∣

∣

[A∗
θ −A∗

0]π0

θ

〉

+

〈

ξ

∣

∣

∣

∣

A∗
0[πθ − π0]

θ

〉 (11)

The limit θ → 0 on the left hand side of equation (11) exists and equals 0 by
(7) and (8). Thus the same is true for the right hand side, i.e.,

lim
θ→0

(〈

ξ

∣

∣

∣

∣

[A∗
θ −A∗

0]π0

θ

〉

+

〈

ξ

∣

∣

∣

∣

A∗
0[πθ − π0]

θ

〉)

= 0
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and thus further that

lim
θ→0

〈

ξ

∣

∣

∣

∣

[A∗
θ −A∗

0]π0

θ

〉

= − lim
θ→0

〈

ξ

∣

∣

∣

∣

A∗
0[πθ − π0]

θ

〉

(12)

in the sense that if the limit on one side of equation (12) exists, then so does
the limit on the other one. Since ξ ∈ E was arbitrarily chosen (12) establishes
the equivalence of (9) and (10).

Remark 1.6 If limθ→0
1
θ 〈ξ|πθ − π0〉 = 〈ξ|π′

0〉 for some π′
0 ∈ F , then (9) is

fulfilled with ν = A∗
0π

′
0. This follows from the continuity of A∗

0 (Proposition
1.4).

Remark 1.7 If the spaces E and F in Lemma 1.5 are additionally endowed
with norms ‖.‖E and ‖.‖F respectively, such that 〈.|.〉 is continuous with respect
to these norms then (8) is implied by

(∀ξ ∈ E) lim
θ→0

θ−1‖[Aθ −A0]‖ · ‖πθ − π0‖ = 0, (13)

that is further implied by the norm-Lipschitz continuity of θ 7→ Aθ and θ 7→ πθ

at θ = 0. (Compare with [12] Proof of Theorem 3.1)

2 Sensitivity analysis of semigroups

Remark 2.1 Let (H, ‖.‖) denote a normed linear space and let ‖.‖-limn→∞ ξn
denote the limit with respect to ‖.‖ of the sequence (ξn)n∈N ∈ HN. We say that a

linear operatorA : H → H is ‖.‖-bounded if ‖A‖L := supξ∈H\{0}
‖Aξ‖
‖ξ‖ < ∞. We

denote the space of ‖.‖-bounded operators by L(H) and note that (L(H), ‖.‖L)
formes a normed algebra. If convenient we write ‖A‖ instead of ‖A‖L.

Lemma 2.2 Suppose that E :=
⋃

j∈J Ej is a linear space and that (Ej , ‖.‖j)
are (for j ∈ J) complete normed spaces. Suppose further that Aθ : E → E is
linear, Aθ(Ej) ⊆ Ej and Aθ|Ej

∈ L(Ej). Then for any j ∈ J and any ξj ∈ Ej

Uθ(t)ξj := etAθ := ‖.‖j- lim
N→∞

N
∑

n=0

(tAθ)
n

n!
ξj ∈ Ej ,

Vθ(t)ξj := ‖.‖j- lim
N→∞

N
∑

n=1

t

n

(tAθ)
n−1

(n− 1)!
ξj ∈ Ej

(14)

exist, i.e. (14) well-defines operators Uθ(t), Vθ(t) : E → E.

Proof: The Chauchy sequences
(

N
∑

n=0

(tAθ)
n

n!
ξj

)

N∈N

and

(

N
∑

n=1

t

n

(tAθ)
n−1

(n− 1)!
ξj

)

N∈N

(15)

converge by completeness of Ej with respect to ‖.‖j.
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Remark 2.3 Note that V0(t)ξ =
∫ t

s=0
U0(s)ξ ds, with the integral either taken

in the sense of Riemann or Lebesgue.

Notation 2.4 In the situation of Lemma 2.2 we write ‖A‖j instead of ‖A|Ej
‖j .

Remark 2.5 The following Theorem 2.6 is the main result of this article. Its
reformulation Corollary 2.7 is concerned with the sensitivity of [Uθ(t)]

∗π0 with
respect to the parameter θ at θ = 0. Note that [U0(t)]

∗π0 = π0, i.e., π0 is an
equilibrium for the dynamics governed by t 7→ [Uθ(t)]

∗ and thus Corollary 2.7
provides formulas for the calculation of the first order effect of small pertur-
bations of the parameter θ to the systems dynamics at an equilibrium (of the
unperturbed system).

Theorem 2.6 Suppose that the hypotheses of Lemma 1.5 and the hypothesis of
Lemma 2.2 are fulfilled. Suppose that for any j ∈ J the mapping

θ 7→ ‖Aθ −A0‖j (16)

is Lipschitz continuous at θ = 0 and that

sup
ξ∈Ej\{0}

〈ξ|π0〉
‖ξ‖j

< cj < ∞, (17)

for appropriate constants cj i.e., ξ 7→ 〈ξ|π0〉 defines (for any j ∈ J) a ‖.‖j-
continuous linear functional on Ej. Let Uθ(t), Vθ(t) : E → E denote the opera-
tors defined by (14). Then:

(i)
The mappings θ 7→ ‖Uθ(t) − U0(t)‖j and θ 7→ ‖Vθ(t) − V0(t)‖j
are—for any j ∈ J—continuous at θ = 0,

(ii) ∀ξ ∈ E limθ→0 θ
−1〈[Uθ(t)− U0(t)]ξ|π0〉 = −〈V0(t)ξ|ν〉

for any ν ∈ F fulfilling (10).

Corollary 2.7 In the case that F = E′ and 〈ξ|µ〉 := µ(ξ), we may reformulate
conclusion (ii) of Theorem 2.6 (using Remark 1.3) as

〈

ξ

∣

∣

∣

∣

∂[Uθ(t)]
∗π0

∂θ

〉

=
∂

∂θ
〈ξ|[Uθ(t)]

∗π0〉 = −〈V0(t)ξ|ν〉 (18)

with [Uθ(t)]
∗ the adjoint of Uθ(t).

Proof of Theorem 2.6: To prove (i) we just show conitnuity of θ 7→ ‖Vθ(t) −
V0(t)‖j at θ = 0, since continuity of θ 7→ ‖[Uθ(t)−U0(t)‖j is proved completely
analoguous. Let

Vθ,N (t) :=

N
∑

n=1

t

n

(tAθ)
n−1

(n− 1)!
. (19)
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Lipschitz continuity of θ 7→ ‖Aθ−A0‖j at θ = 0 implies that θ 7→ ‖Aθ‖j < c < ∞
for some appropriate c > 0 in a 0-neighborhood (−ρ, ρ) ∩Θ, thus that

θ 7→ ‖An
θ −An

0‖j =
∥

∥

∥

∥

∥

n−1
∑

i=0

(Aθ)
n−i−1[Aθ −A0](A0)

i

∥

∥

∥

∥

∥

j

≤ n ·cn−1‖Aθ−A0‖j (20)

on (−ρ, ρ) ∩Θ and thus further that

θ 7→ ‖Vθ,N(t)− V0,N (t)‖j =
∥

∥

∥

∥

∥

N
∑

n=1

tn

n!
(An−1

θ −An−1
0 )

∥

∥

∥

∥

∥

j

(21)

is continuous at θ = 0. Assertion (i) follows easily from the fact that the limit
of a uniformly convergent sequence of function that are all continuous at θ = 0
is again continuous at θ = 0 and that θ 7→ ‖Vθ,N(t)− V0,N )(t)‖j converges uni-
formly on (−ρ, ρ) to θ 7→ ‖Vθ(t)− V0(t)‖j .

To prove (ii) note that A∗
0π0 = 0 implies

[(A∗
θ)

n − (A∗
0)

n]π0 = (A∗
θ)

n−1[A∗
θ −A∗

0]π0. (22)

Thus

〈[Uθ(t)− U0(t)]ξ|π0〉
(a)
= lim

N→∞

〈

N
∑

n=1

tn

n!
[(Aθ)

n − (A0)
n]ξ|π0

〉

= lim
N→∞

〈

ξ|
N
∑

n=1

tn

n!
[(A∗

θ)
n − (A∗

0)
n]π0

〉

(b)
= lim

N→∞

〈

ξ|
N
∑

n=1

t

n

(tA∗
θ)

n−1

(n− 1)!
[A∗

θ −A∗
0]π0

〉

= lim
N→∞

〈

[Aθ −A0]

N
∑

n=1

t

n

(tAθ)
n−1

(n− 1)!
ξ|π0

〉

(c)
= 〈[Aθ −A0]Vθ(t)ξ|π0〉

= 〈Vθ(t)ξ|[A∗
θ −A∗

0]π0〉,
(23)

with (a) and (c) consequences of the ‖.‖-continuity of ξ 7→ 〈ξ|π0〉 (Hypotheisis
(17)) and (b) a consequence of (22).

Let νθ := θ−1[A∗
θ − A∗

0]π0. From (17) and by the Lipschitz continuity of
θ 7→ ‖Aθ − A0‖ at θ = 0 we obtain that ∃ℓj > 0 such that ∀θ ∈ Θ \ {0} and
∀ξ ∈ Ej

〈ξ|νθ〉 = θ−1〈[Aθ −A0]ξ|π0〉 ≤ cj‖[Aθ −A0]ξ‖ ≤ ℓj‖ξ‖j. (24)

From (24) we get ∀θ ∈ Θ \ {0} and ∀ξ ∈ Ej that

〈[Vθ(t)− V0(t)]ξ|νθ〉 ≤ ℓj [‖Vθ(t)− V0(t)]ξ‖j . (25)

From (25) and (i) we obtain that

∀j ∈ J ∀ξj ∈ Ej lim
θ→0

〈[Vθ(t)−V0(t)]ξ|νθ〉 ≤ ℓj lim
θ→0

‖[Vθ(t)−V0(t)]ξ‖j = 0. (26)

8



From the weak differentiability of θ 7→ A∗
θπ0 at θ = 0, i.e., from (10), we obtain

that
∀ξ ∈ E lim

θ→0
〈V0(t)ξ|νθ − ν〉 = 0 (27)

Using (26) and (27) we obtain for ξ ∈ E, i.e. for ξ ∈ Ej for appropriate j, that

lim
θ→0

〈Vθ(t)ξ|νθ〉 − 〈V0(t)ξ|ν〉 = lim
θ→0

〈[Vθ(t)− V0(t)]ξ|νθ〉+ lim
θ→0

〈V0(t)ξ|[νθ − ν]〉 = 0.

(28)

We finally obtain using (23) and (28) that

lim
θ→0

θ−1〈[Uθ(t)− U0(t)]ξ|π0〉
(23)
= lim

θ→0
θ−1〈Vθ(t)ξ|[A∗

θ −A∗
0]π0〉

= lim
θ→0

〈Vθ(t)ξ|νθ〉
(28)
= 〈V0(t)ξ|ν〉,

(29)

Thus (ii) has been proved.

3 The OU-semigroup

Definition 3.1 Let I be some interval in R. Denote by R(I) the vector space
of all polynomial functions ξ : I → R. Denote by R(I)′ the space of all lin-
ear functionals with values in R on R(I) and let 〈.|.〉 denote the natural dual
pairing between R(I) and R(I)′. Note that any such functional is uniquely
determined on the space of monomials and thus any such functional may be

uniquely represented as F (ξ) = (
∑

∞

n=1
∂n

∂xn |x=0ξ(x)).

Example 3.2 Let Aθ : R(R) → R(R) be given by

Aθ := (θ − x)
∂

∂x
+

1

2

∂2

∂x2 . (30)

and let A∗
θ : R(R)′ → R(R)′ denote the dual of Aθ. Let πθ ∈ R(R)′ be implicitly

given by

∀ξ ∈ R(R) 〈ξ|πθ〉 =
∫ ∞

−∞
ξ(x)

1√
π
e(x−θ)2 dx.

Define the Ornstein–Uhlenbeck semigroup t 7→ [Uθ(t)]
∗ as the semigroup of the

adjoints [Uθ(t)]
∗ of the operators Uθ(t) = etAθ . Then A∗

θπθ = 0 and the action
of the Ornstein–Uhlenbeck semigroup on π0 is given by

〈Uθξ|π0〉 = 〈ξ|U∗
θ π0〉 =

∫ ∞

−∞
ξ(x)

1√
π
e(x−(1−e−t)θ)2 dx. (31)

Further 1√
π
e(x−θ)2 and 1√

π
e(x−(1−e−t)θ)2 are the densities of the normal distri-

butions N(θ, 1/2) and N((1 − e−t)θ, 1/2), respectively. Thus by Theorem 2.6
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(ii) and (31)

〈ξ|[V0(t)]
∗ν〉 = 〈V0(t)ξ|ν〉 = lim

θ→0
θ−1〈[Uθ(t)− U0(t)]ξ|π0〉

= lim
θ→0

θ−1

∫ ∞

−∞
ξ(x)

1√
π

(

e(x−(1−e−t)θ)2 − ex
2
)

dx

=

∫ ∞

−∞
ξ(x) · π−1/2(e−t − 1)xex

2

dx,

i.e., [V0(t)]
∗ν is represented by the function π−1/2(e−t−1)xex

2

. It is possible to
perform the above calculation since we can, in the case of the OU-semigroup,
calculate [Uθ(t)]

∗ and thus [Uθ(t)]
∗π0 in closed form. Another possibility to

calculate 〈V0(t)ξ|ν〉 would be to calculate ν and to use Remark 2.3. However
to do this it is again necessary to calculate [U0(s)]

∗ in closed form. For the
Wright–Fisher diffusion this has only been achieved in some special cases [8],
[3].

4 The Wright-Fisher diffusion

We intend—in the case of the Wright–Fisher diffusion—to utilize Theorem 2.6
(ii) for the series expansion of limθ→0 θ

−1〈[Uθ(t) − U0(t)]ξ|π0〉 via the series
expansion of V0(t). This is done in the next section.

Remark 4.1 Let κ > 0 be fixed throughout this section. For θ ≥ 0 we define
operators Aθ : R([0, 1]) → R([0, 1]) by

Aθ := (1− x)θ
∂

∂x
− xκ

∂

∂x
+ x(1− x)

∂2

∂x2
. (32)

Let πθ ∈ R([0, 1])′ be implicitly defined by

∀ξ ∈ R([0, 1]) 〈ξ|πθ〉 :=
∫

ξ(x)
Γ(θ + κ)

Γ(θ)Γ(κ)
xθ−1(1− x)κ−1 dx (33)

for θ > 0 and by 〈ξ|π0〉 := ξ(0). Then A∗
θπθ = 0, i.e.,

∀ξ ∈ R([0, 1]) 〈Aθξ|πθ〉 = 0. (34)

This is almost trivial in the case that θ = 0. For θ > 0 and polynomials ξ of the
form

ξ(x) = x2(1− x)2 · p(x)
—with p(x) an arbitrary polynomial—we obtain (34) by partial integration

〈Aθξ|πθ〉 =
∫

ξ(x)

[

− ∂

∂x
xθ−1(1− x)κθ +

∂

∂x
xθ(1− x)κ−1κ+

∂2

∂x2
xθ(1 − x)κ

]

dx = 0,

which can be further extended to arbitrary polynomials by approximation ar-
guments. (See also [5, Chapter 4])
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Definition 4.2 Let [Uθ(t)]
∗ be the adjoint of Uθ(t) = etAθ with Aθ given by

(32). We call the semigroups t 7→ [Uθ(t)]
∗ Wright–Fisher diffusions.

Remark 4.3 Since for θ > 0 the function x 7→ Γ(θ+κ)
Γ(θ)Γ(κ)x

θ−1(1 − x)κ−1 defined

on [0, 1] is the density of a Beta distribution, we obtain that 〈1|πθ〉 = 1 and thus
further that θ−1〈1|πθ − π0〉 = 0.

Remark 4.4 For n ≥ 1 we obtain from (33) that θ > 0 implies

〈xn|πθ〉 =
Γ(θ + n)Γ(θ + κ)

Γ(θ)Γ(θ + κ+ n)
· 〈1|πθ+n〉 =

n−1
∏

i=0

θ + i

θ + κ+ i
, (35)

while 〈xn|π0〉 = 0n = 0. Thus

lim
θ→0

θ−1〈xn|πθ − π0〉 = lim
θ→0

θ−1〈xn|πθ〉 = lim
θ→0

1

θ

n−1
∏

i=0

θ + i

θ + κ+ i
=

Γ(n)Γ(κ)

Γ(κ+ n)
.

Proposition 4.5 Let Aθ be given by (32). Then

d

dθ
〈ξ|A∗

θπ0〉|θ=0 = lim
θ→0

〈[Aθ −A0]ξ|π0〉 =
〈

(1− x)
∂

∂x
ξ(x)|π0

〉

= ξ′(0). (36)

Remark 4.6 From Proposition 4.5, Lemma 1.5 and Remark 1.6 we obtain that
for Aθ given by (32)

lim
θ→0

〈A0ξ|θ−1(πθ −π0)〉 = ξ′(0) i.e. ν := lim
θ→0

A∗
0θ

−1(πθ −π0) =
∂

∂x
|x=0 (37)

and thus further from Remark 2.7 that
〈

ξ

∣

∣

∣

∣

∂[Uθ(t)]
∗π0

∂θ
|θ=0

〉

= 〈V0(t)ξ|ν〉 =
∂

∂x
[V0(t)ξ](x)|x=0 (38)

Remark 4.7 Calling an element µ ∈ R(R)′ a probability-distribution if 〈1|µ〉 =
1 and 〈ξ|µ〉 ≥ 0 for all ξ ≥ 0, we obtain the following interpretation of our
Wright–Fisher diffusions t 7→ [Uθ(t)]

∗:
Suppose that we start at time 0 in a probability-distribution µ on [0, 1] giving

us the proportion of individuals—in a large haploid population—that carries an
allele A. Suppose further that we interpret the parameter κ as the mutation
rate at which allele A transforms into another allele B and θ as the mutation
rate at which allele B transforms back into A. Then the probability-distribution
[Uθ(t)]

∗µ gives us the proportion of individuals carrying allele A at time t.
Further the n-th moment 〈xn|[Uθ(t)]

∗µ〉 of [Uθ(t)]
∗µ gives us the probability

that n individuals independently chosen from the population at time t all carry
allele A. The probability-distributions πθ are the equilibrium distributions for
the respective mutation rates. In the case that θ = 0 and κ > 0 none of
the individuals carries allele A in the equilibrium π0. Suppose now that we

11



start in the equilibrium π0, but that the mutation rate θ is greater than 0.
Then the probability-distribution describing the population evolves according to
t 7→ [Uθ(t)]

∗π0, and t 7→ 〈xn|[Uθ(t)]
∗π0〉 gives us the evolution of the probability

that n individuals chosen at random from the population all carry allele A. An
approximation of the probability 〈xn|[Uθ(t)]

∗π0〉 for fixed t and small values of
θ can be obtained by the first order expansion

〈xn|[Uθ(t)]
∗π0〉 ≈ 〈xn|[U0(t)]

∗π0〉+ θ ·
〈

xn

∣

∣

∣

∣

∂

∂θ
[Uθ(t)]

∗π0

〉

. (39)

Since 〈xn|[U0(t)]
∗π0〉 = 0 for n ≥ 1 and 〈xn|[U0(t)]

∗π0〉 = 1 for n = 0, it suffices
by (38) to calculate

∂

∂x
[V0(t)x

n]|x=0 =

〈

xn

∣

∣

∣

∣

∂

∂θ
[Uθ(t)]

∗π0

〉

(40)

to determine the approximation (39). This is done for n = 0, 1, 2 in the following
example.

Example 4.8 We calculate the derivative of the 0th, 1st and 2nd moments of
θ 7→ [Uθ(t)]

∗π0 at θ = 0 by calculating ∂
∂x [V0(t)x

i]|x=0 for i ∈ 0, 1, 2.

Clearly
A01 = 0, A0x = −κx and A0x

2 = (−2κ− 2)x2 + 2x

From this we obtain for k ≥ 1 (by induction on k) that Ak
01 = 0, Ak

0x = (−κ)kx
and

Ak
0x

2 = (−2κ− 2)kx2 + 2 ·
k−1
∑

i=0

(−2κ− 2)k−(i+1)(−κ)ix

and thus further (note that A0 = id) that

[V0(t)]1 =
∞
∑

k=1

[

tk

k!
Ak−1

]

1 = t, (41)

[V0(t)]x =

∞
∑

k=1

[

tk

k!
Ak−1

]

x =

∞
∑

k=1

tk

k!
(−κ)k−1x =

e−κt

−κ
x (42)
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and

[V0(t)]x
2 =

∞
∑

k=1

[

tk

k!
Ak−1

]

x2

=

∞
∑

k=1

tk

k!

[

(−2κ− 2)kx2 + 2

k−1
∑

i=0

(−2κ− 2)k−(i+1)(−κ)ix

]

= e(−2κ−2)tx2 + 2

∞
∑

k=1

tk

k!
(−2κ− 2)k−1

k−1
∑

i=0

(

κ

2κ+ 2

)i

x

= e(−2κ−2)tx2 + 2

∞
∑

k=1

tk

k!

(−2κ− 2)k(1− (κ/(2κ+ 2))k)

(−2κ− 2)(1− (κ/(2κ+ 2))
x

= e(−2κ−2)tx2 − 2

κ+ 2
e−κt

(

e−(κ+2)t − 1
)

x.

(43)

From (41), (42) and (43), we obtain that

∂

∂x
[V0(t)]1 = 0,

∂

∂x
[V0(t)]x =

e−κt

−κ
and

∂

∂x
[V0(t)]x

2 = 2e(−2κ−2)tx− 2

κ+ 2
e−κt

(

e−(κ+2)t − 1
)

(44)

Remark 4.9 Of course we can also calculate the derivatives of higher moments
of θ 7→ [Uθ(t)]

∗π0 at θ = 0 with increasing computational effort. Moreover there
exists a basis of the space of polynomials—consisting of the vectors 1, x and the
vectors ξn defined in (46) below—for that a simple recursion for the calculation
of limθ→0〈θ−1[Uθ(t)− U0(t)]ξn|π0〉 can be given.

Theorem 4.10 Let bn,0, κ ∈ R be arbitrary, let γn,n = 1 and let for n ≥ 2,
k ≥ 1 and 2 ≤ m ≤ n− 1

γn,m−1 :=
m(m− 1)

n(−κ− n+ 1)− (m− 1)(−κ−m+ 2)
· γn,m, (45)

ξn :=
n
∑

m=2

xmγn,m (46)

and
bn,k := −κbn,k−1 + (n(−κ− n+ 1))k−1 · 2γn,2 (47)

Then for n ≥ 2 and k ≥ 1

Ak
0 [ξn + bn,0x+ a] = (n(−κ− n+ 1))kξn + bn,kx (48)

〈Ak
0 [ξn + bn,0x+ a]|ν〉 = ∂

∂x
[Akξn](x)|x=0 = bn,k (49)
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and for bn,0 = 0

〈

ξn

∣

∣

∣

∣

∂[Uθ(t)]
∗π0

∂θ
|θ=0

〉

= lim
θ→0

〈θ−1[Uθ(t)− U0(t)]ξn|π0〉 =
∞
∑

k=1

tk

k!
bn,k−1. (50)

Proof: To prove (48) we show for β = (n(−κ− n+ 1))k−1 and i ≥ 1 that

A0[βξn + bn,i−1x+ a] = n(−κ− n+ 1)βξn + bn,ix. (51)

This is done by a comparison of coefficients. The coefficient αn of xn in A0[βξn+
bn,k−1x+ a] equals n(−κ− n+ 1)β as the following calculation shows:

αnx
n = −x2 ∂2

∂x2
βxn − κx

∂

∂x
βxn = n(−κ− n+ 1)βxn. (52)

For 3 ≤ m ≤ n the coefficient αm−1 of xm−1 in A0[βξn + b0x + a] is given by
n(−κ− n+ 1)βγn,m−1 as can be seen by the following calculation:

αm−1x
m−1 = x

∂2

∂x2
xmβγn,m − x2 ∂2

∂x2
xm−1βγn,m−1 − κx

∂

∂x
xm−1βγn,m−1

= (m(m− 1)βγn,m + (m− 1)(−κ−m+ 2)βγn,m−1)x
m−1

= n(−κ− n+ 1)βγn,m−1 x
m−1,

(53)

with the last equality a consequence of (45). Thus it remains to calculate the
coefficients α1 of x1 and α0 of x0 = 1. We obtain α0 = 0 since the first and
second order derivatives applied to the constant function gives 0. We further
obtain α1 = −κbn,i−1 + β2γn,2 = bn,i by the following calculation:

α1x = x
∂2

∂x2
x2βγn,2 − x2 ∂2

∂x2
xβbn,i−1 − κx

∂

∂x
xβbn,i−1

= (β · 2γn,2x+ 0− κbn,i−1)x = bn,ix,

(54)

with the last equality a consequence of (47) From (52), (53) and (54) we obtain
(51) and by recursion over (51) (with i ranging from 1 to k) we obtain (48).
Equation (49) is a consequence of (48) and Remark 4.6.

Finally we obtain (50) by the following calculation

lim
θ→0

〈θ−1[Uθ(t)− U0(t)]ξn|π0〉
(a)
= 〈V0(t)ξn|ν〉

(b)
= lim

N→∞

〈

N
∑

k=1

t

k

(tA0)
k−1

(k − 1)!
ξn

∣

∣

∣

∣

∣

ν

〉

(c)
=

∞
∑

k=1

tk

k!
bn,k−1,

(55)

with (a), (b) and (c) consequences of Theorem 2.6 (ii), Lemma 2.2 and equation
(49) with bn,0 = a = 0, respectively.
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